

7844 Madison Avenue, Suite 106 • Fair Oaks, CA 95628 1.800.242.5249 • Ph. 916.535.0200 • Fax 916.535.0207

May 11, 1995

Mr. Norm Wheat Ramos Environmental Engineering 1515 South River Road West Sacramento, CA 95691

Subject:

Underground Storage Tank Closure Report

River Rat, 9840 Fair Oaks Blvd., Fair Oaks, California

Dear Mr. Wheat:

Apex Envirotech, Inc. (Apex), is pleased to provide Ramos Environmental Engineering (Ramos) this report documenting the results of the soil sampling conducted during the removal of five underground storage tanks (USTs), product piping and dispensers at the subject site. In addition, this report documents the results of the soil sampling conducted on the stockpiled soil generated during the removal of the UST system. The purpose of the investigation was to characterize the site's shallow subsurface exposed during the removal of the USTs, perform regulatory UST closure sampling and characterize the excavated soil stockpiled on site.

This report is based, in part, on information obtained by Apex from Ramos and is subject to modification as newly acquired information may warrant.

SITE DESCRIPTION

The site is a former retail gasoline station located one-eighth mile north of the American River in Fair Oaks, Sacramento County, California. The site is located in a commercial/residential area at the corner of Fair Oaks Blvd. and Pennsylvania Ave. The four 4,000 and one 8,000 gallon single-wall steel gasoline tanks were greater than 30 years in age. The tanks had been non-operational for approximately one year.

RESULTS OF UST REMOVAL

Approximately 350 cubic yards of sand backfill material was excavated prior to removal of the USTs and product lines. The Sacramento County Environmental Management Department (SCEMD) inspected the tanks upon removal. Apex personnel was not summoned to the site until after tanks #1, #2 and #3 (Figure 1) had been removed and transported from the site. The SCEMD representative, Mr. Cris Hamilton, reported that tank #2 was corroded and contained numerous corrosion pits. Tanks #4 and #5 were inspected by Apex personnel and were reported

Underground Storage Tank Closure Report River Rat, 9840 Fair Oaks Blvd., Fair Oaks, California

to be in poor condition. A hole approximately 1-½ inches in diameter was documented along the west side of Tank #5. The product lines were in fair condition with slight corrosion. Please refer to Attachment 1 for photographs. Once the tanks were removed, the tank basin excavation dimensions measured approximately 38 feet in width by 55 feet in length by 15 feet in total depth. The native soils encountered in the sidewalls and bottom of the UST basin and product trenches consisted of a medium brown sand.

Prior to removal, 950 gallons of gasoline was removed from the USTs then the tanks were triplerinsed and the rinseate manifested and transported from the site for proper disposal. Rushway Trucking of Newcastle, California transported the removed tanks to Triangle, Inc. of Sacramento, California as non-hazardous waste.

On April 25, 1995, Apex personnel collected ten soil samples beneath the former USTs and on May 1 and 2, 1995, Apex personnel collected twelve soil samples beneath the former product lines and dispensers. The location of the samples (Figure 1) are in accordance with the "Tri-Regional Board Staff Recommendations for Preliminary Evaluation and Investigation of Underground Tank Sites" (dated August 10, 1990) and recommendations from SCEMD. Thirty-six soil samples were collected on May 1 and 2, 1995, under the direction of the SCEMD, from the stockpiled soil and composited, at the laboratory, into nine samples for analyses. All activities were performed in accordance with the Apex Standard Operating Procedures located in Attachment 2.

The samples were delivered, under chain-of-custody, to Sparger Technology, Inc. of Sacramento, California, a state-certified analytical laboratory for analyses of: total petroleum hydrocarbons (TPH), as gasoline, by modified EPA Method 8015, benzene, toluene, ethylbenzene, and total xylenes (BTEX) by EPA Method 8020 and STLC lead by CAM1.

The analytical results are summarized in Table 1. The laboratory reports and chain-of-custody forms are included in Attachment 3. Concentrations of TPH, as gasoline, ranged from 1.5 to 4,600 parts-per-million (ppm) for samples collected along the western end of the former USTs. The remaining soil samples collected in the former UST basin reported below the reporting limit (BDL) for TPH, as gasoline, with the exception of T4E-15' that reported 490 ppm. TPH, as gasoline, ranging from BDL to 7,400 ppm was reported for samples collected within the product line trenches and beneath the dispensers along the northern island. The soil sample, PL-3, collected west of the southern most island and soil sample PL-10 collected at the southern most island reported TPH, as gasoline, at 3,900 and 5.0 parts-per-million (ppm), respectively. The remaining product line samples reported BDL for TPH, as gasoline. Benzene concentrations were reported at BDL for all soil samples collected in the UST basin and all but three in the product line and dispenser trenches. Concentrations of WET lead reported BDL for all soil samples collected within the former UST basin with results reported from BDL to 6.5 mg/L for soil samples collected within the former product line trenches and beneath the former dispensers.

Underground Storage Tank Closure Report River Rat, 9840 Fair Oaks Blvd., Fair Oaks, California

STOCKPILE SOIL

The analytical laboratory results reported BDL for TPH, as gasoline, and BTEX for all soil samples collected in the stockpiled soil with the exception of 9(A-D) Composite. The 9(A-D) Composite reported 49 ppm for TPH, as gasoline, BDL for benzene, 0.093 for toluene, 0.16 for ethylbenzene and 1.5 ppm for total xylenes. The composite 9(A-D) was collected from the soil generated during the excavation of the product line trenches where the soil sample PL-3 was collected. The WET lead analyses of the stockpiled soil ranged from BDL to 6.8 mg/L.

REMARKS/SIGNATURES

The information contained within this report reflects our professional opinions and was developed in accordance with currently available information. This report was prepared solely for the use of Ramos. Any reliance on this report by parties other than Ramos shall be at their own risk. The report was prepared under the direct supervision of the professional geologist, registered with the State of California, whose signature appears below.

Apex is pleased to be of continued service to Ramos. If you have any questions or comments, please do not hesitate to call us at (916)535-0200.

Sincerely;

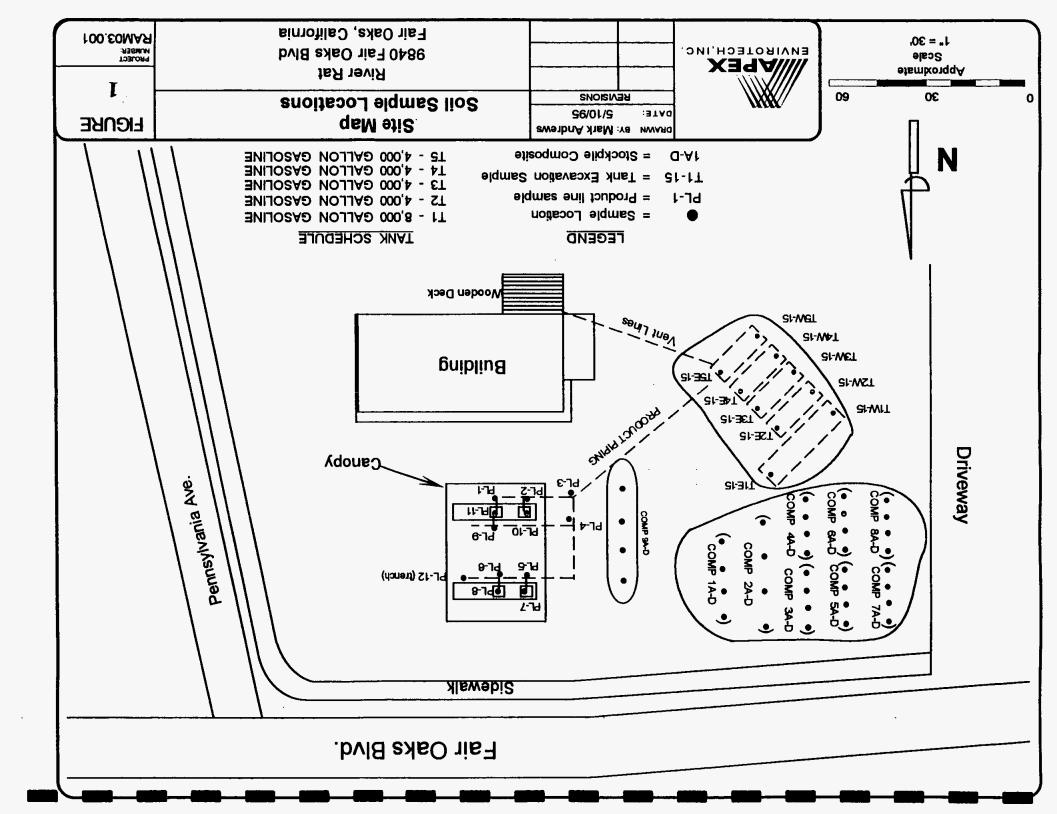
APEX ENVIROTECH, D

Wright aueline R. Doub

roject Manager

Pat Wright

Principal Geologist


CRG No. 00529

Attachments

MAY 2 3 1995

FIGURE

TABLE

TABLE 1 ANALYTICAL RESULTS: SOIL

River Rat

9840 Fair Oaks Blvd, Fair Oaks, California (All results in parts-per-million)

Sample ID	Date Collected	Sample Depth (Feet)	Total Petroleum Hydrocarbons As	م	Aromatic Volatile Organics			
			Gasoline	Benzene	Toluene	Ethyl- benzene	Total Xylenes	(mg/L)
T1E-15'	4/25/95	15.0	<	<	< <	\	<	<
T1W-15	4/25/95	15.0	500*	<		2 000000000000000000000000000000000000	0.28	<
T2E-15'	4/25/95	15.0	< 1.5*	<	<. <	<		<
T2W-15'	4/25/95	15.0		<	•	<	***************************************	<
T3E-15'	4/25/95	15.0	<	< <		< <		< <
T3W-15'	4/25/95	15.0		<				`
T4E-15' T4W-15'	4/25/95 4/25/95	15.0 15.0	490* 340	< <	0.44 5.4	1.1	5.7 22	ر د
T5E-15'	4/25/95 4/25/95	15.0 15.0	340 <	<	3.4 <	o <	- 44 - <	<
T5W-15'	4/25/95	15.0	4600	<	270	120	440	`
	7,20,00		7000		<i></i>	***		
PL1@3'	5/1/95	3.0	<	<	<	<	<	1,1
PL2@2.5'	5/1/95	2.5	<	<	<u> </u>	<	<	1.3
PL3@2.5'	5/1/95	2.5	3,900	Ŷ.	~	19	70	3.8
PL4@3'	5/1/95	3.0	<	<	<	<	<	1.4
PL5@3'	5/1/95	3.0	<u>`</u>	\	<u> </u>	<	<	0.91
PL6@1.5'	5/1/95	1.5	2,500	3	19	20	100	2.3
PL7@2	5/1/95	2.0	4,300	ζ.	43	25	90	2.6
PL8@3*	5/1/95	3.0	7,400	18	180	130	440	6.5
PL9@3.5'	5/1/95	3.5	,	<	<	<	<	1.5
PL10@1.5'	5/1/95	1.5	5.0	0.24	0.29	0.032	110	15
PL11@3'	5/1/95	3.0	<	<	<	<	<	4.5
Trench	5/2/95	3.0	<	<	<	<	<	<
	., _, , ,	7.7						
STP1A-1D	5/1/95	NA	<	<	<	<	<	5.1
STP2A-2D	5/1/95	NA	<	<	<	<	<	6.8
STP3A-3D	5/1/95	NA	<	<	<	<	<	3.7
STP4A-4D	5/1/95	NA	<	<	<	<	<	4.6
5(A-D)Comp.	5/2/95	NA	<	<	<	<	<	<
6(A-D)Comp.	5/2/95	NA	<	<	<	<	<	<
7(A-D)Comp.	5/2/95	NA	<	<	<	<	<	<
8(A-D)Comp.	5/2/95	NA	<	<	<	<	<	. <
9(A-D)Comp.	5/2/95	NA	49*	<	0.093	0.16	1.5	<
***************************************			·		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	powestosomere Statistics	·	

NOTES:		
<	=	Below detection limits per "Tri-Regional Board Staff Recommendations for Preliminary
		Evaluation and Investigation of Underground Tank Sites"(August 10, 1990) Practical
		Quanitation Reporting Limits. (PQL for BTEX = 0.005 ppm, TPH as gasoline and diesel = 1.0 ppm).
NA	=	Not Analyzed/Applicable
*	=	Weathered Gasoline Detected
T1E-15'	=	Soil Sample Collected Beneath the Tank #1on the East End of the Tank at 15 feet below surface
PL11@3'	=	Product Line Sample Collected at 3 feet below surface
Trench	=	Product Line Sample Collected at 3 feet below surface
STP4A-4D	=	Stockpile Soil Composite Sample
9(A-D)	=	Stockpile Soil Composite Sample

ATTACHMENT 1 PHOTOGRAPHS

ATTACHMENT 2
APEX STANDARD OPERATING PROCEDURES

APEX ENVIROTECH, INC. STANDARD OPERATING PROCEDURE Excavation / Ust Removal

SOP - 2 SOIL EXCAVATION AND SAMPLING

Excavation and subsequent soil sampling is performed under the direction of a registered geologist or civil engineer. To reduce the potential for cross-contamination, all excavation equipment is either steam cleaned or washed prior to use and between excavations. Soil samples for chemical analysis are collected in cleaned, thin-walled brass tubes of varying diameters and lengths (e.g., 6 inches long by 2 inches outside diameter) or other appropriate cleaned sample container. If used, one tube may be set in a 2-inch inside diameter, hand-driven sampler. To reduce the potential for cross-contamination between samples, the sampler is washed in a solution and doubly rinsed between each sampling event.

Upon recovery, a portion of the soil sample is sealed for later screening with either a portable photoionization detector, flame ionization detector, or an explosimeter. Another portion of the sample is used for description of the excavated materials. A third portion of the sample is hermetically sealed, labeled and refrigerated for delivery, under strict chain-of-custody, to the analytical laboratory. These procedures minimize the potential for cross-contamination and volatilization of volatile organic compounds prior to chemical analysis.

In the event the soil samples cannot be submitted to the analytical laboratory on the same day they are collected (e.g., due to weekends or holidays), the samples are temporarily stored until the first opportunity for submittal either on ice in a cooler, such as when in the field, or in a refrigerator at Apex's office.

SOP - 3 SOIL CLASSIFICATION

Soil samples are classified according to the Unified Soil Classification System. Representative portions of the samples may be submitted, under strict chain-of-custody, to an analytical laboratory for further examination and verification of the in-field classification and analysis of soil mechanical and/or petrophysical properties. The soil types are indicated on logs of either excavations or borings together with depths corresponding to the sampling points and other pertinent information.

SOP - 4 SAMPLE IDENTIFICATION AND CHAIN-OF-CUSTODY PROCEDURES

Sample identification and chain-of-custody procedures ensure sample integrity as well as document sample possession from the time of collection to ultimate disposal. Each sample container submitted for analysis is labeled to identify the job number, date, time of sample collection, a sample number unique to the sample, any in-field measurements made, sampling methodology, name(s) of on-site personnel, and any other pertinent field observations also recorded on the field excavation or boring log.

Chain-of-custody forms are used to record possession of the sample from time of collection to arrival at the laboratory. During shipment, the person with custody of the samples will relinquish them to the next person by signing the chain-of-custody form(s) and noting the date and time. The sample-control officer at the laboratory will verify sample integrity,

correct preservation, confirm collection in the proper container(s), and ensure adequate volume for analysis.

If these conditions are met, the samples will be assigned unique laboratory log numbers for identification throughout analysis and reporting. The log numbers will be recorded on the chain-of-custody forms and in the legally-required log book maintained in the laboratory. The sample description, date received, client's name, and any other relevant information will also be recorded.

SOP - 5 LABORATORY ANALYTICAL QUALITY ASSURANCE AND CONTROL

In addition to routine instrument calibration, replicates, spikes, blanks, spiked blanks, and certified reference materials are routinely analyzed at method-specific frequencies to monitor precision and bias. Additional components of the laboratory Quality Assurance/Quality Control program include:

- Participation in state and federal laboratory accreditation/certification programs;
- Participation in both U.S. EPA Performance Evaluation studies (WS and WP studies) and interlaboratory performance evaluation programs;
- Standard operating procedures describing routine and periodic instrument maintenance;
- "Out-of-Control"/Corrective Action documentation procedures; and,
- 5. Multi-level review of raw data and client reports.

ATTACHMENT 3
ANALYTICAL LABORATORY RESULTS REPORT AND
CHAIN-OF-CUSTODY FORM

III Quality Control

- A. <u>Project Specific QC</u>. No project specific QC (i.e., spikes and/or duplicates) was requested.
- B. <u>Method Blank Results</u>. A method blank is a laboratory-generated sample which assesses the degree to which laboratory operations and procedures cause false-positive analytical results for your sample.

No target parameters were detected in the method blank associated with your sample at the reporting limit levels noted on the data sheets in the Analytical Results section.

- C. <u>Laboratory Control Spike</u>. A Laboratory Control Spike (LCS) is a sample which is spiked with known analyte concentrations, and analyzed at approximately 10% of the sample load in order to establish method-specific control limits. The LCS results associated with your samples are on the attached Laboratory Control Spike and Laboratory Control Spike Duplicate Analysis Report.
- D. Matrix Spike Results. A Matrix Spike is a sample which is spiked with known analyte concentrations, and analyzed at approximately 10% of the sample load in order to establish method-specific control limits. The Matrix Spike results associated with your samples are on the attached Matrix Spike and Matrix Spike Duplicate Analysis Report.

Accuracy is measured by Percent Recovery as in:

% recovery = (measured concentration) x 100 (actual concentration)

IV <u>Analysis Results</u>

Results are on the attached data sheets.

8020/8015 Modified Analysis Report Project: River RAT-452 (RAM03.001)

Attention:

Mr. Dave Irby

Ramos Env. Engineering 1515 S. River Road

W. Sacramento, CA 95691

Date Sampled:

Apr 25, 1995

Date Received: Date Analyzed:

Арг 26, 1995 May 1, 1995

Invoice #:

4678

Matrix: Soil

Unit = ua/a

Client		Service Control										
Onoin		Det		Det		, Det		⊚Det ⊲		∂Det .	Surrogate % Recovery	Dilution
ID	В	Limit	T	Limit	Е	Limit	Х	Limit	TPHgas	Limit	of Trifluorotoluene	1;
T1E-15'	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	1.0	83%	1
T1W-15'	ИD	0.10	ND	0.10	ND	0.10	0.28	0.10	500 *	20	128%	20
T2E-15'	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	1.0	103%	1
T2W-15'	ND	0.005	ND	0.005	ND	0.005	ND	0.005	1.5 *	1.0	97%	1
T3E-15'	ND	0.005	ND	0.005	ИD	0.005	ND	0.005	ND	1.0	102%	1
T3W-15'	ND	0.005	ND	0.005	ИD	0.005	ND	0.005	ND	1.0	75%	1
T4E-15'	ND	0.10	0.44	0.10	1.1	0.10	5.7	0.10	490 *	20	141% **	20
T4W-15'	ND	1.0	5.4	1.0	6.0	1.0	22	1.0	340	200	98%	200
T5E-15'	ND	0:005	ND	0.005	ND	0.005	ND	0.005	ND	1:0	104%	1
T5W-15'	ND	12	270	. 12	120	12	440	12	4600	2500	110%	2500
	T1E-15' T1W-15' T2E-15' T2W-15' T3E-15' T3W-15' T4E-15' T4W-15' T5E-15'	T1E-15' ND T1W-15' ND T2E-15' ND T2W-15' ND T3E-15' ND T3W-15' ND T4E-15' ND T4W-15' ND T5E-15' ND	T1E-15' ND 0.005' T1W-15' ND 0.10 T2E-15' ND 0.005 T2W-15' ND 0.005 T3E-15' ND 0.005 T3W-15' ND 0.005 T4E-15' ND 0.10' T4W-15' ND 1.0' T5E-15' ND 0.005 T5W-15' ND 1.0'	T1E-15' ND 0.005' ND T1W-15' ND 0.10 ND 0.005 ND T2W-15' ND 0.005 ND T3E-15' ND 0.005 ND T4E-15' ND 0.005 ND T4E-15' ND 0.10' 0.44 T4W-15' ND 1.0 5.4 T5E-15' ND 0.005 ND T5W-15' ND 0.005 ND	ID B Limit T Limit T1E-15' ND 0.005 ND 0.005 T1W-15' ND 0.10 ND 0.10 T2E-15' ND 0.005 ND 0.005 T2W-15' ND 0.005 ND 0.005 T3E-15' ND 0.005 ND 0.005 T3W-15' ND 0.005 ND 0.005 T4E-15' ND 0.10' 0.44 0.10' T4W-15' ND 1.0' 5.4 1.0' T5E-15' ND 0.005 ND 0.005 T5W-15' ND 0.005 ND 0.005	ID B Limit T Limit E T1E-15' ND 0.005 ND 0.005 ND T1W-15' ND 0.10 ND 0.10 ND T2E-15' ND 0.005 ND 0.005 ND T2W-15' ND 0.005 ND 0.005 ND T3E-15' ND 0.005 ND 0.005 ND T3W-15' ND 0.005 ND 0.005 ND T4E-15' ND 0.10' 0.44 0.10' 1.1 T4W-15' ND 1.0 5.4 1.0' 6.0 T5E-15' ND 0.005 ND 0.005 ND T5W-15' ND 1.2 270 12 120	ID B Limit T Limit E Limit T1E-15' ND 0.005 ND 0.005 ND 0.005 T1W-15' ND 0.10 ND 0.10 ND 0.10 T2E-15' ND 0.005 ND 0.005 ND 0.005 T2W-15' ND 0.005 ND 0.005 ND 0.005 T3E-15' ND 0.005 ND 0.005 ND 0.005 T4E-15' ND 0.005 ND 0.005 ND 0.005 T4W-15' ND 0.10' 0.44 0.10' 1.1 0.10' T5E-15' ND 0.005 ND 0.005 ND 0.005 T5W-15' ND 0.005 ND 0.005 ND 0.005	ID B Limit T Limit E Limit X T1E-15' ND 0.005 ND 0.005 ND 0.005 ND T1W-15' ND 0.10 ND 0.10 ND 0.10 0.28 T2E-15' ND 0.005 ND 0.005 ND 0.005 ND T2W-15' ND 0.005 ND 0.005 ND 0.005 ND T3E-15' ND 0.005 ND 0.005 ND 0.005 ND T3W-15' ND 0.005 ND 0.005 ND 0.005 ND T4E-15' ND 0.10 0.44 0.10 1.1 0.10 5.7 T4W-15' ND 1:0 5.4 1:0 6.0 1:0 22 T5E-15' ND 0:005 ND 0:005 ND 0:005 ND T5W-15' ND 12 270 12	ID B Limit T Limit E Limit X Limit T1E-15' ND 0.005 ND 0.005 ND 0.005 ND 0.005 T1W-15' ND 0.10 ND 0.10 ND 0.10 0.28 0.10 T2E-15' ND 0.005 ND 0.005 ND 0.005 ND 0.005 T2W-15' ND 0.005 ND 0.005 ND 0.005 ND 0.005 T3E-15' ND 0.005 ND 0.005 ND 0.005 ND 0.005 T3W-15' ND 0.005 ND 0.005 ND 0.005 ND 0.005 T4E-15' ND 0:10' 0.44 0:10' 1.1 0.10' 5.7 0:10' T4W-15' ND 1:0' 5.4 1!0' 6.0 1!0' 22 1.0' T5E-15' ND 0:005 ND	ID B Limit T Limit E Limit X Limit TPHgas T1E-15' ND 0.005 ND 0.005 ND 0.005 ND 0.005 ND T1W-15' ND 0.10' ND 0.10' ND 0.10' 0.28' 0.10' 500 * T2E-15' ND 0.005' ND 0.005' ND 0.006' ND 0.005' ND	ID	T1E-15' ND 0.005 ND 0

ppm = parts per million = ug/g = micrograms per gram

ND = Not Detected. Compound(s) may be present at concentrations below the detection limit.

- * Weathered gasoline was detected.
- ** High surrogate recovery due to matrix interference.

R. L. James, Principal Chemist

May 3, 1995

8020/8015 Modified Analysis Report Project: River RAT-452 (RAM03.001)

Attention:

Mr. Dave Irby

Ramos Env. Engineering 1515 S. River Road

W. Sacramento, CA 95691

Date Sampled:

May 1, 1995

Date Received: Date Analyzed:

May 2, 1995 May 4, 1995

Invoice #:

4706

Matrix: Soil

Matrix: 5011												Unit = mg/kg	ğ
Lab	Client		੍ਹ Det ਾ		Det		Det		Det		Det	Surrogate % Recovery	Dilution
ID I	ID	В	Limit	T	Limit	E	Limit	Х	Limit	TPHgas	Limit	of Trifluorotoluene	1:
ST95-05-092A	PL1 @3'	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	. 3	86%	1
ST95-05-094A	PL2 @2.5'	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	1.0	50% *	1
ST95-05-096A	PL3 @2.5'	ND	2.5	ND	2.5	19	2.5	70	2.5	3900	500	79%	500
ST95-05-098A	PL4 @3'	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	1.0	84%	1
ST95-05-100A	PL5 @3'	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	1:0	60% *	1
ST95-05-102A	PL6 @1.5'	3.0	2.5	19	2.5	20	2.5	100	2.5	2500	500	104%	500
ST95-05-104A	PL7 @2'	ND	2.5	43	2:5	25	2.5	90	2.5	4300	500ì	101%	500
ST95-05-106A	PL8 @3'	18	12	180	12	130	12	440	12:	7400	2500	101%	2500

ppm = parts per million = mg/kg = milligrams per kilogram

ND = Not Detected. Compound(s) may be present at concentrations below the detection limit.

Low surrogate recovery due to matrix effects.

R. L. James, Principal Chemist

May 9, 1995 Date Reported

Analytical Laboratory
Mobile Laboratory
Scientific Division Division

Date Reported May 9, 1995

Sparger

With Automation in Mind

May 1, 1995

8020/8015 Modified Analysis Report

Project: River RAT-452 (RAM03.001

May 2, 1995 Date Sampled:

W. Sacramento, CA 95691

Ramos Env. Engineering

Mr. Dave Irby

Attention:

1515 S. River Road

May 4, 1995 Date Received Date Analyzed:

Invoice #:

Unit = mg/kg

Dilution Surrogate % Recovery of Trifluorotoluene 84% 78% 72% 84% 77% 80% Det **TPHgas** 5.0 윋 잎 2 2 2 9 Det Limit 0.005 0.005 005 0.005 0.005 0.005 o

9

0.005

2

0.005

읖

0.005

2

PL11 @1.5'

ST95-05-112A

2

0.005

9

0.005

일

0.005

2

STP1A-1D

ST95-05-114A

皇

0.005

9

0.006

윋

0.005

9

STP2A-2D

ST95-05-122A

9

0.005

皇

0.005

0.005

9

PL9 @3.5'

ST95-05-108A

0.005

0.032

0.025

0.29

0.025

0.24

PL10@1.5'

ST95-05-110A

×

Det

ш

Det

Limit Det

É

 \Box

Client \bigcirc

Matrix: Soil Lab

ppm = parts per million = mg/kg = milligrams per kilogram ppb = parts per billion = ug/L = micrograms per Lite

일

0.005

2

0.005

0.005

9

STP4A-4D

ST95-05-126A

2

0.005

9

0:005

2

0.005

9

STP3A-3D

ST95-05-124A

ND = Not Detected. Compound(s) may be present at concentrations below the detection limit

Dilution 1:5 for Benzene & Toluene

R. L. James, Principal Chemist

SPARGER TECHNOLOGY ANALYTICAL LABORATORY, INC. IS CERTIFIED BY THE STATE OF CALIFORNIA DEPARTMENT OF HEALTH SERVICES AS A HAZARDOUS WASTE TESTING LABORATORY

3050 Fite Circle, Suite 112 • Sacramento, California 95827 • (916) 362-8947 • FAX (916) 362-0947

8020/8015 Modified Analysis Report Project: River RAT (452)

Attention:

Mr. Dave Irby

Ramos Env. Engineering 1515 S. River Road

W. Sacramento, CA 95691

Date Sampled:

May 2, 1995

Date Received: Date Analyzed: May 3, 1995 May 5, 1995

Invoice #:

4712

Matrix: Soil

Matrix: 5011												Unit = mg/kg	Q	.]
Lab	Client		Det		⊪ Det ុ		Det		⊪Det⊪		∰ Det ∮	Surrogate % Recovery	Dilution	L
ID	ID	В	Limit	Т	Limit	Ε	Limit	X	Limit	TPHgas	Limit	of Trifluorotoluene	1:_ •	L
ST95-05-154A	Trench	ФИ	0.005	ND	0.005	ND	0.005	ND	0.005	ND	1.0	107%	1	- - - -
ST95-05-156A	7(A-D) Comp.	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	1.0	86%	1	
ST95-05-158A	8(A-D) Comp.	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	1:0	77%	1	
ST95-05-160A	6(A-D) Comp.	ND	0.005	ND	0.005	ИD	0.005	ND	0.005	ND	1.0	79%	1	
ST95-05-162A	5(A-D) Comp.	ND	0.005	ND	0.005	ND	0.005	ND	0.005	ND	1.0	67% *	1	
ST95-05-164A		ND	0.025	0.093	0.025	0.16	0.025	1.5	0.025	49 **	5.0	88%	5	

ppb = parts per billion = ug/L = micrograms per Liter

ppm = parts per million = mg/kg = milligrams per kilogram

ND = Not Detected. Compound(s) may be present at concentrations below the detection limit.

*Low surrogate recovery due to matrix effects.

** Weathered gasoline was detected.

R. L. James, Principal Chemist

May 9, 1995 Date Reported Analytical Laboratory Division
Mobile Laboratory Division
Scientific Division

CAM 1 (STLC): WET Project: River RAT-452 (RAM03.001)

Attention:

Mr. Dave Irby

Ramos Env. Engineering 1515 S. River Road

W. Sacramento, CA 95691

Date Sampled:

Apr 25, 1995

Date Received:

Apr 26, 1995

Date Analyzed:

May 2, 1995

invoice #:

4678

Matrix: Soil

Units: mg/L

			Omis. mg/L
Client	Lead (Pb)	Reporting	Dilution
	· · · · · · · · · · · · · · · · · · ·		1:
10	1100011		
T1F-15'	ND	0.20	1
T1W-15'	ND	0.20	1
T2E-15'	ND	0.20	1
T2W-15'	ND	. 0.20 ்	1
T3E-15'	ND	0.20	1
			4
T3W-15'	ND	0.20	1
T4E 461	ND	0.20	4
145-10	ND	0.20	•
T4\6/_15'	ND	0.20	1
1784-10	140		•
T5F-15'	ND	0.20	1
.02 10			•
T5W-15'	ND	0.20	1
		ID Result T1E-15' ND T1W-15' ND T2E-15' ND T2W-15' ND T3E-15' ND T3W-15' ND T4E-15' ND T4E-15' ND T4E-15' ND	ID Result Limit

ppm = parts per million = mg/L = milligrams per Liter

ND = Not Detected. Compound(s) may be present at concentrations below the detection limit.

R. L. James, Principal Chemist

May 2, 1995

Date Reported

SPARGER TECHNOLOGY ANALYTICAL LABORATORY, INC. IS CERTIFIED BY THE STATE OF CALIFORNIA.

DEPARTMENT OF HEALTH SERVICES AS A HAZARDOUS WASTE TESTING LABORATORY

(Certification No. 1614)

CAM 1 (STLC): WET Project: River RAT-452 (RAM03.001)

Attention:

Mr. Dave Irby

Ramos Env. Engineering 1515 S. River Road

W. Sacramento, CA 95691

Date Sampled:

May 1, 1995

Date Received: Date Analyzed:

May 2, 1995 May 5, 1995

Invoice #:

4706

Matrix: Soil

Units: ma/L

Watrix: Soil				Units: mg/L
Lab	Client	Lead (Pb)	Reporting	Dilution
ID	ID	Result	Limit	1:
ST95-05-093A	PL1 @3'	1.1	, 0.20 Link	1
ST95-05-095A	PL2 @2.5'	1.3	0.20	1
ST95-05-097A	PL3 @2.5'	3.8	0.20	1
ST95-05-099A	PL4 @3'	1.4	0.20	1
ST95-05-101A	PL5 @3'	0.91	.0.20	1
ST95-05-103A	PL6 @1.5'	2.3	0.20	1
ST95-05-105A	PL7 @2'	2.6	0.20	1
ST95-05-107A	PL8 @3'	6.5	0.20	1
ST95-05-109A	PL9 @3.5'	1.5	0.20	1
ST95-05-111A	PL10 @1.5'	15	0.20	1
ST95-05-113A	PL11 @1.5'	4.5	0.20	1
ST95-05-115A	STP1A-1D	5.1	0.20	1
ST95-05-123A	STP2A-2D	6.8	0.20	1
ST95-05-125A	STP3A-3D	3.7	0.20	1
ST95-05-127A	STP4A-4D	4.6	0.20	1

ppm = parts per million = mg/L = milligrams per Liter

ND = Not Detected. Compound(s) may be present at concentrations below the detection limit.

R. L. James, Principal Chemist

May 8, 1995

Date Reported

SPARGER TECHNOLOGY ANALYTICAL LABORATORY, INC. IS CERTIFIED BY THE STATE OF CALIFORNIA.

DEPARTMENT OF HEALTH SERVICES AS A HAZARDOUS WASTE TESTING LABORATORY

(Certification No. 1814)

CAM 1 (STLC): WET Project: River RAT (452)

Attention:

Mr. Dave Irby

Ramos Env. Engineering 1515 S. River Road

W. Sacramento, CA 95691

Date Sampled:

May 2, 1995

Date Received:

May 3, 1995 May 8, 1995

Date Analyzed: Invoice #:

4712

Matrix: Soil

Units: ma/L

watrix: 5011				Offics, mg/L
Lab	Client	Lead (Pb)	Reporting	Dilution
LID	ID	Result	Limit	1:
ST95-05-155A	Trench	ND	0.20	1
ST95-05-157A	7(A-D) Comp.	ND	0.20	1
ST95-05-159A	8(A-D) Comp.	ND	0.20	1
ST95-05-161A	6(A-D) Comp.	ND	0.20	1
ST95-05-163A	5(A-D) Comp.	ND	0.20	1
ST95-05-165A	9(A-D) Comp.	ND	0.20	1

ppm = parts per million = mg/L = milligrams per Liter

ND = Not Detected. Compound(s) may be present at concentrations below the detection limit.

R. L. James, Principal Chemist

May 9, 1995 Date Reported

SPARGER TECHNOLOGY ANALYTICAL LABORATORY, INC. IS CERTIFIED BY THE STATE OF CALIFORNIA.

DEPARTMENT OF HEALTH SERVICES AS A HAZARDOUS WASTE TESTING LABORATORY

(Certification No. 1614)

8020 Modified Laboratory Control Spike (LCS) & Laboratory Control Spike Duplicate (LCSD) BTEX Analysis Report

Attention:

Mr. Dave Irby

Ramos Env. Engineering

1515 S. River Road

W. Sacramento, CA 95691

Date Sampled:

Apr 25, 1995

Date Received:

Apr 26, 1995

Date Analyzed:

May 1, 1995

Project ID:

452 (RAM03.001)

Project Name:

River RAT

Client ID:

LCS/LCSD

LAB ID:

ST95-05-001 LCS

ST95-05-001 LCSD

Matrix:

Soil

Dilution:

Name	Conc. Spike Added	Sample Result	LCS Result	LCSD Result	Units	LCS % Recovery	LCSD % Recovery	% RPD Recovery
Benzene	30 ppb	ND	31	30	ug/kg	103%	100%	3%
Toluene	30 ppb	ND	30	30	ug/kg	100%	100%	0%
Ethylbenzene	30 ppb	ND	29	30	ug/kg	97%	100%	3%
Xylenes	30 ppb	ND	29	29	ug/kg	97%	97%	0%
0				40004		070	1 00D	
Surrogate % R	108%	LCS	97%	LCSD				

ppb = parts per billion = ug/kg = micrograms per kilogram

ppm= parts per million = ug/g = micrograms per gram

ND = Not Detected. Compound(s) may be present at concentrations below the detection limit.

R. L. James, Principal Chemist

May 3, 1995

Date Reported

SPARGER TECHNOLOGY ANALYTICAL LABORATORY, INC. IS CERTIFIED BY THE STATE OF CALIFORNIA DEPARTMENT OF HEALTH SERVICES AS A HAZARDOUS WASTE TESTING LABORATORY (Certification No. 1614)

8020 Modified Matrix Spike (MS) & Matrix Spike Duplicate (MSD) BTEX Analysis Report

Attention:

Mr. Dave Irby

Ramos Env. Engineering

1515 S. River Road

W. Sacramento, CA 95691

Date Sampled: Apr 25, 1995

Date Received:

Apr 26, 1995

Date Analyzed:

May 1, 1995

Project ID:

452 (RAM03.001)

Project Name:

River RAT

Client ID:

MS/MSD (Batch)

LAB ID:

ST95-04-872A MS ST95-04-872A MSD

Matrix:

Soil

Dilution:

Name	Conc. Spike Added	Sample Result	MS Result	MSD Result	Units_	MS % Recovery	MSD % Recovery	% RPD Recovery
Benzene	30 ppb	ND	32	29	ug/kg	107%	97%	10%
Toluene	30 ppb	ND	32	27	ug/kg	107%	90%	17%
Ethylbenzene	30 ppb	ND	30	25	ug/kg	100%	83%	18%
Xylenes	30 ppb	ND	29	26	ug/kg	97%	87%	11%
Surrogate % R	ecovery of Trif	luorotoluer	e =	105%	MS	103%	MSD	

ppb = parts per billion = ug/kg = micrograms per kilogram

ppm= parts per million = ug/g = micrograms per gram

ND = Not Detected. Compound(s) may be present at concentrations below the detection limit.

R. L. James, Principal Chemist

May 3, 1995

SPARGER TECHNOLOGY ANALYTICAL LABORATORY, INC. IS CERTIFIED BY THE STATE OF CALIFORNIA DEPARTMENT OF HEALTH SERVICES AS A HAZARDOUS WASTE TESTING LABORATORY

(Certification No. 1614)

8020 Modified Laboratory Control Spike (LCS) & Laboratory Control Spike Duplicate (LCSD) BTEX Analysis Report

Attention:

Mr. Dave Irby

Ramos Env. Engineering

1515 S. River Road

W. Sacramento, CA 95691

452 (RAM03.001)

Project Name:

Date Sampled:

Date Received:

Date Analyzed:

River RAT

May 1, 1995

May 2, 1995

May 4, 1995

Client ID:

Project ID:

LCS/LCSD

LAB ID:

ST95-05-004 LCS ST95-05-004 LCSD

Matrix:

Soil

Dilution:

Name	Conc. Spike Added	Sample Result	LCS Result	LCSD Result	Units	LCS % Recovery	LCSD % Recovery	% RPD Recovery
Benzene	30 ppb	ND	29	29	ug/kg	97%	97%	0%
Toluene	30 ppb	ND	29	28	ug/kg	97%	93%	4%
Ethylbenzene	30 ppb	ND	30	30	ug/kg	100%	100%	0%
Xylenes	30 ppb	ND	30	29	ug/kg	100%	97%	3%
Surrogate % R	ecovery of Trif	luorotoluen	ie =	89%	LCS	86%	LCSD	

ppb = parts per billion = ug/kg = micrograms per kilogram

ppm= parts per million = ug/g = micrograms per gram

NO = Not Detected. Compound(s) may be present at concentrations below the detection limit.

R. L. James, Principal Chemist

May 9, 1995

Date Reported

SPARGER TECHNOLOGY ANALYTICAL LABORATORY, INC. IS CERTIFIED BY THE STATE OF CALIFORNIA DEPARTMENT OF HEALTH SERVICES AS A HAZARDOUS WASTE TESTING LABORATORY (Certification No. 1614)

8020 Modified Matrix Spike (MS) & Matrix Spike Duplicate (MSD) BTEX Analysis Report

Date Sampled:

Date Received:

Date Analyzed:

Attention:

Mr. Dave Irby

Ramos Env. Engineering 1515 S. River Road

W. Sacramento, CA 95691

Project ID:

452 (RAM03.001)

Project !

Project Name: River RAT

Client ID:

MS/MSD (Batch)

LAB ID:

ST95-05-092A MS

May 1, 1995 May 2, 1995

May 4, 1995

ST95-05-092A MSD

Matrix:

Soil

Dilution:

Name	Conc. Spike Added	Sample Result	MS Result	MSD Result	Units	MS % Recovery	MSD % Recovery	% RPD Recovery
Benzene	30 ppb	ND	23	23	ug/kg	77%	77%	0%
Toluene	30 ppb	ND	22	21	ug/kg	73%	70%	5%
Ethylbenzene	30 ppb	ND	23	21	ug/kg	77%	70%	9%
Xylenes	30 ppb	ND	23	21	ug/kg	7 7 %	70%	9%
Surragata 9/ E	laassaas of Trif	1		760/	ме	9.00/	S MSD	
Surrogate % R	ie =	76%	M2	00%	ט ואוסט			

ppb = parts per billion = ug/kg = micrograms per kilogram

ppm= parts per million = ug/g = micrograms per gram

ND = Not Detected. Compound(s) may be present at concentrations below the detection limit.

R. L. James, Principal Chemist

May 9, 1995 DATE

SPARGER TECHNOLOGY ANALYTICAL LABORATORY, INC. IS CERTIFIED BY THE STATE OF CALIFORNIA DEPARTMENT OF HEALTH SERVICES AS A HAZARDOUS WASTE TESTING LABORATORY

(Certification No. 1814)

8020 Modified Laboratory Control Spike (LCS) & Laboratory Control Spike Duplicate (LCSD) BTEX Analysis Report

Attention:

Mr. Dave Irby

Ramos Env. Engineering

1515 S. River Road

W. Sacramento, CA 95691

Date Sampled:

Date Received:

Date Analyzed:

May 2, 1995 May 3, 1995

May 5, 1995

Project ID:

452

Project Name:

River RAT

Client ID:

LCS/LCSD

LAB ID:

ST95-05-005 LCS ST95-05-005 LCSD

Matrix:

Soil

Dilution:

Name	Conc. Spike Added	Sample Result	LCS Result	LCSD Result	Units	LCS % Recovery	LCSD % Recovery	% RPD Recovery
Benzene	30 ppb	ND	27	28	ug/kg	90%	93%	4%
Toluene	30 ppb	ND	27	28	ug/kg	90%	93%	4%
Ethylbenzene	30 ppb	ND	28	- 29	ug/kg	93%	97%	4%
Xylenes	30 ppb	ND	28	29	ug/kg	93%	97%	4%
Surrogate % R	ecovery of Trif	luorotoluen	ie =	86%	LCS	87%	6 LCSD	

ppb = parts per billion = ug/kg = micrograms per kilogram

ppm= parts per million = ug/g = micrograms per gram

ND = Not Detected. Compound(s) may be present at concentrations below the detection limit.

R. L. James, Principal Chemist

May 9, 1995

8020 Modified Matrix Spike (MS) & Matrix Spike Duplicate (MSD) BTEX Analysis Report

Attention:

Mr. Dave Irby

Ramos Env. Engineering

1515 S. River Road

W. Sacramento, CA 95691

Date Sampled:

Date Received:

May 2, 1995 May 3, 1995

Date Analyzed: N

May 5, 1995

Project ID:

452

Project Name:

River RAT

Client ID:

MS/MSD

LAB ID:

ST95-05-154A MS ST95-05-154A MSD

Matrix:

Soil

Dilution:

Name	Conc. Spike Added	Sample Result	MS Result	MSD Result	Units	MS % Recovery	MSD % Recovery	% RPD Recovery
Benzene	30 ppb	ND	27	26	ug/kg	90%	87%	4%
Toluene	30 ppb	ND	27	24	ug/kg	90%	80%	12%
Ethylbenzene	30 ppb	ND	28	24	ug/kg	93%	80%	15%
Xylenes	30 ppb	ND	27	24	ug/kg	90%	80%	12%
Surrogate % R	ecovery of Trif	luorotoluer	ie =	88%	MS	88%	MSD	

ppb = parts per billion = ug/kg = micrograms per kilogram

ppm= parts per million = ug/g = micrograms per gram

ND = Not Detected. Compound(s) may be present at concentrations below the detection limit.

R. L. James, Principal Chemist

May 9, 1995

SPARGER TECHNOLOGY ANALYTICAL LABORATORY, INC. IS CERTIFIED BY THE STATE OF CALIFORNIA DEPARTMENT OF HEALTH SERVICES AS A HAZARDOUS WASTE TESTING LABORATORY (Certification No. 1614)

Metal, (STLC) LCS / LCSD Recoveries

Attention:

Project #:

Client ID:

Matrix:

Mr. Dave Irby

Ramos Env. Engineering

1515 S. River Road

W. Sacramento, CA 95691

452 (RAM03.001)

LCS/LCSD

Soil

Date Sampled:

Date Received:

Date Analyzed:

Apr 26, 1995 May 2, 1995

Арг 25, 1995

River RAT Project Name:

950501A

Dilution:

LAB ID:

Units: (mg/L)

Element	Spike Conc.	LCS	LCS % Recovery	LCSD	LCSD % Recovery	% RSD
Lead (Pb)	5.0	5.5	110%	5.7	114%	4%

ppm= parts per million = mg/L = milligram per Liter

ND = Not Detected. Compound(s) may be present at concentrations below the detection limit.

R. L. James, Principal Chemist

May 2, 1995

Metal, (STLC) MS/MSD Recoveries

Attention:

Mr. Dave Irby

Ramos Env. Engineering

1515 S. River Road

W. Sacramento, CA 95691

Date Sampled:

Apr 25, 1995

Date Received:

Apr 26, 1995 May 2, 1995

Date Analyzed: May 2, 19

Project #:

452 (RAM03.001)

Project Name:

River RAT

Client ID:

MS/MSD

LAB ID:

ST95-04-777A MS_

ST95-04-777A MSD

Matrix:

Soil

Dilution:

Units: (mg/L)

	Sample	Spike		MS %		MSD %	%
Element	Conc.	Conc.	MS	Recovery	MSD	Recovery	RSD
Lead (Pb)	ND	5.0	5.3	106%	4.9	98%	8%

ppm= parts per million = mg/L = milligram per Liter

ND = Not Detected. Compound(s) may be present at concentrations below the detection limit.

R. L. James, Principal Chemist

May 2, 1995

Metal, (STLC) LCS / LCSD Recoveries

Attention:

Mr. Dave Irby

Date Sampled:

May 1, 1995

Ramos Env. Engineering

Date Received:

May 2, 1995

1515 S. River Road

Date Analyzed:

May 5, 1995

W. Sacramento, CA 95691

452 (RAM03.001)

Project Name:

River RAT

Client ID:

Project #:

LCS/LCSD

LAB ID:

950505A

Matrix:

Soil

Dilution:

Units: (mg/L)

Element	Spike Conc.	LCS	LCS % Recovery	LCSD	LCSD % Recovery	% RSD
Lead (Pb)	100	100	100%	96	96%	4%

ppm= parts per million = mg/L = milligram per Liter

NO = Not Detected. Compound(s) may be present at concentrations below the detection limit.

R. L. James, Principal Chemist

May 8, 1995

Metal, (STLC) MS/MSD Recoveries

Attention:

Mr. Dave Irby

Ramos Env. Engineering

1515 S. River Road

W. Sacramento, CA 95691

Date Sampled:

May 1, 1995

Date Received:

May 2, 1995

Date Analyzed:

May 5, 1995

Project #:

452 (RAM03.001)

Project Name:

River RAT

Client ID:

MS/MSD

LAB ID:

ST95-05-093A MS

ST95-05-093A MSD

Matrix:

Soil

Dilution:

Units: (mg/L)

	Sample	Spike		MS %		MSD %	%
Element	Conc.	Conc.	MS	Recovery	MSD	Recovery	RSD
Lead (Pb)	1.1	100	92	91%	91	90%	1%
Lead (FD)	1.1	100	32	31/0	31	30 /6	1 70

ppm= parts per million = mg/L = milligram per Liter

ND = Not Detected. Compound(s) may be present at concentrations below the detection limit.

R. L. James, Principal Chemist

May 8, 1995

Metal, (STLC) LCS / LCSD Recoveries

Attention:

Mr. Dave Irby

Ramos Env. Engineering

1515 S. River Road

W. Sacramento, CA 95691

Date Sampled:

May 2, 1995

Date Received:

May 3, 1995

Date Analyzed:

May 8, 1995

Project #:

452

Project Name:

River RAT

Client ID:

LCS/LCSD

LAB ID:

950508A

Matrix:

Soil

Dilution:

Units: (mg/L)

Element	Spike Conc.	LCS	LCS % Recovery	LCSD	LCSD % Recovery	% RSD
Lead (Pb)	5.0	6.0	120%	5.9	118%	2%

ppm= parts per million = mg/L = milligram per Liter

NO = Not Detected. Compound(s) may be present at concentrations below the detection limit.

R. L. James, Principal Chemist

May 9, 1995

Date Reported

SPARGER TECHNOLOGY ANALYTICAL LABORATORY, INC. IS CERTIFIED BY THE STATE OF CALIFORNIA DEPARTMENT OF HEALTH SERVICES AS A HAZARDOUS WASTE TESTING LABORATORY (Certification No. 1614)

Metal, (STLC) MS/MSD Recoveries

Attention:

Mr. Dave Irby

Date Sampled:

May 2, 1995

Ramos Env. Engineering

Date Received:

May 3, 1995

1515 S. River Road

Date Analyzed:

May 8, 1995

W. Sacramento, CA 95691

452

Project Name:

River RAT

Client ID:

Project #:

MS/MSD

LAB ID:

ST95-05-254A MS

ST95-05-254A MSD

Matrix:

Soil

Dilution:

Units: (mg/L)

Element	Sample Conc.	Spike Conc.	MS	MS % Recovery	MSD	MSD % Recovery	% RSD
Lead (Pb)	0.48	5.0	6.3	116%	6.3	116%	0%

ppm= parts per million = mg/L = milligram per Liter

ND = Not Detected. Compound(s) may be present at concentrations below the detection limit.

R. L. James, Principal Chemist

May 9, 1995

SPARGER T	TECHN	OLOG	Υ,	IN	 С.				-				,,,,,	_								CI	ΗA	IN	OF	Cl	JS	то	D١	/ R	EC	OR	≀D				
3050 Fite Circle, Su	iite 112								Ph	ona;	(91	16) 3	62-	894	7																						
Sacramento, CA 95	827									AX:							1																	11	1 =	0	
Project Manager:		_								one.S																								40	67	0	
1/2	4UC]	M. Ed								Fax:	91	63	37	1-9	31	<u>て</u>	4																				
Report Address:	.Am≥S !.C. Box	ENCHO	JMC	ath.	Bill	ling A	Addre	86;	En	מוצו	ا مُنَ مَع	1-J M	7				-														N ₁	umb	er:				
ا ن	EST SA	RRAME	ماتو	, 0	A	, 9.	56	91																													
Project Name: 12)	ven Ra	+T					P	rojec	t #:			50 K	Av	103	3.0	ा	L							,	AN	ALY	/SIS	RE	<u>.QU</u>	EST							
Project Location:		~ · -			_	. 4		CF	m	هې کړو	OB A	£	Ÿ.	52	-		RI	EMA	RK	s: (2cs	. 5	Eve	d a	PY	04	-	~46	ig to tech	CA)	٧	VET (STL	C)			
Project Location:	१९५०	FAIR (<u>ن</u> هـِن	KS		lud	_	P.C). #:				•				1			ď	&>	λħς '	s to		PE	×c	Ni	ont	Jec1	۸.	Ш						
1	ma (DAKS!	CA	۲. ۲	756	320	3	(25	ニフ	32	긔									94\ A n	ኒ ክ	anci		~ / Δ	tre	51 20	اھ ا دن	06		<u> </u>	TC	LP.				
,								ľ									L								<u>~,</u>	_/2	<u> </u>	<u>لا</u>			Ш						
ļ	Sam	pling		Cor	ntaiı	201	1	Pra		ativ	<u> </u>	sad	1	M	atri		╁	_T -	i			ŦĊĿĨ [•	Τ	 -	r	1				<u> </u>	To	tal			T A T	_
	3411	piiiig			11.011			1 16.	361			364	-	Ţ <u></u>	T	Î	╁	+	-	_			508	-			-	T	Τ	Т			\vdash	\vdash		TAT	_
			ΑC	eve	amber bottle	lastic		(VICE)										BTEX (602/8020)/503.1	BTEX/TPHgas (602/8020/8015)	TPHdiesel/TPHmotor oil(8015)	EPA 601/8010/502.2/504	8020	(Pesticides)/505,	608/8080 (PCB's)	624/8240/524.2	625/8270/525	pse	& Grease (5520)	- WET LEAD.		Metals	CAM-5 Metals (Cd, Cr, Pb, Ni, Zn)			June 100 de	Rush Services (48hr), (24hr), or (12	
SAMPLE ID	Date	Time	40 nil VOA	Brass Sleeve	L ambe	250 mL Plastic	Other:	HCI/HNOS/ICE)			None	Other:	Water	Soil	Air			37EX (60	3TEX/TPI	PHdiese	PA 601	EPA 602/8020	EPA 608		EPA 624	EPA 625	Organic Lead	Total Oil &	57.7.	<u> </u>	CAM-17 Metals	AM-5 N	Other:		Standa	Rush Ser	A vision A
T1E -15'		1:20 pm	•	×		,,,		\overline{x}		1	=	Ŭ	Ť	X	-			- 1	Ž				<u> </u>	<u> </u>		T.	Ĭ	Ι-	∀	十	Ŭ	Ť	Ĭ		*	-	-*
TIW1-15'	1 (1105pm		/				7		\Box		<u> </u>	1	7	†		1,	Ť	i		-		t						17		\Box					\Box	┢
TIW-15' TZE-15' TZW-15' TZE-15' TZW-15'		1.00 pm.		7				\sqcap						\parallel	1		T	T											T		1				\Box		
T2W-15'	1/	Lisem		1				П						15	1	1	T	T	П					1					11								
736 - 15'		12:50 00	1	\sqcap								<u> </u>		17	1		†	Ť	\prod									\vdash	17	1							T
13W = 15'	1 /	1.10pm		1										11	1	1	1	1	\sqcap		-	T	\vdash	1	1-				1	 	T		 	1			T
THE -15'	 (12:30 00	_	1										17	1	1	†	1	71			 	I^-					 	\forall		一						T
MW-15'	 	12:45 ph		-				1	-			 		17	1	1	†	+	11		\vdash	t	十	 	 	 	\vdash		11	\vdash	 		\vdash	\vdash	\vdash		H
TSE-15'	 	12'. 70 on		-				1		\Box			╁╴	$\dagger \uparrow$	\top	†	+	†	T		 	-	┢	1				\vdash	†	1	╁	 	\vdash		H	-	┢
T54-15'	 	1225pm	1	1				1		1			1	11	+	+	†	+	1		ļ	<u> </u>	T	1		 	ļ	-	$\dagger \dagger$	+	T	\vdash			Ħ		
Relinquished by	 	11-200	<u>.r</u>	<u> </u>	<u> </u>	Rec	eiv	ed t)V:	1 !		<u> </u>				-	TR	elir)au	ish	ed t	 .v:	٠		1		<u> </u>	Re	ceiv	ved l	bv:		_	—			_
1301 12	1/2	1					2v!	/		ĺ									7										J. J. V					ľ			
Date: (1/30/9)	<u>, , , , , , , , , , , , , , , , , , , </u>	Time: 2:5	Z .	9,1	١.					95		Tir	ne:	2,5	<u> </u>	P. r) E	ate	:					Tin	ne:			Da	te:					Tim	ne:		

				`	T		T				iday/Weskend Rush	Holi				-	 _			-	 -	
			704	5						TAT	ah Services (48hi), (24hi), or (12	isny.		\vdash	+	+-		-		+	4	
	1		Ū	<u> </u>	-		L			,	CNAONT	3	X		\pm	┿		+		-	↓	
l			•				6							+	+			7	-	\vdash	*	Time:
		2			<u> </u>		WET ISTLO		_ ₹		OFFO LEKO	na	الا	\Rightarrow	+		_	+		1	ريا	ļĒ.
	1 3	5			Number				Tola		AM-5 Matels (Cd, Ct. Pb, Ni, Zn)		7	\dashv	+	H	\dashv	7	-		X	-
	ַן וּי	ñ			2		*		\mathbb{L}		AlbiaM TI-MA		+		+	┝╌╏		+	+	-	-	
{	1 5	_				۲. ا	3					\dashv	\dashv	+	┿┈	╁╌┥		- }-	+-	-	Received by:	i
رٌ		ž				ā	§ ×		1			+	+	+	+-	\vdash	+	+	+-	<u> </u>	ved	
2		- -				a.	APEX	0	Į		otal Oil & Grease (5520)	<u>, 1</u>	+	+	+-		+	+	+		cei	Date
S. C.	1 =	3				Sis	20 C	00.	ĺ	Ì	thanic Lead	<u>,</u>	+	+	+	 	+	+	+		Œ.	ä_
	CHAINOE CHETORY BECORD	١				ANALYSIS REQUEST	120	~		7	PA 625/8270/525	43	+	+-		-	+	+	-			
	6	5			1	Ž	37	RAMO.3		7	PA 624/8240/524.2	•	+	+-	+	+	+	+	+	Н		
l :	2						1 D	4		7	PA 508/8080 (PCB's)	13	+	+	\vdash	-+		+	-	\dashv		Time:
	۱ ۲	-					200	W.		7	05/205/(eobicitest) 0808/808 A4		+	+	┝╾┤	\dashv	+	+		\dashv		<u> </u>
	ت	•			1		135	色	12	7	OZ08/Z09 V-3	I	+	 -	-	\dashv	+	+	╁╍┪			
							ANDUTICAL	PEX JUGH	~	+	402/2.202/0108/108 A4		+	+-	\vdash	+	+	+	-	-4.	<u>م</u> ز:	
							13 E	×		1	(2109)lio 1010mH9T\(1923ibH9T		+	+	-+	+	+	┾	\dashv	\dashv	Dec.	
							ARK			+	STEX/TPHqus (6C2/8020/8015)			_	-	\pm		-	-	[SE SE	
							REMARKS: AS SEND ANALYTICA	₩		1	BTEX (602/8020)/603.1		+-	+	-	-	-				neiimmanshed by:	Date:
				T					1	十	Other:	4_	+	┼┤	-		+	_		à	<u> </u>	٥
						İ			Š	:	NA.	+	╁	+-	-+	+	+	_		4		[]
- 1		1947	3						Matrix		lie2		+	\vdash	+	+	+	-	-	٦.,		1 5
- 1		[916] 362-8947 (916) 352-0947					بــ				Mute:	10	₽		#	+	-		#	- 4		Time;
ı		6 6	7			1	32		Used	1	netto	+	-		-+-	+	 		_	4		ne.
			10.0	SAME		1	" RE1321		15	r	anoN	↓_	-	-	+	+-	-		-	4		
- 1		Phone: FAX:	Phone	7		75h:	3		rvative	卜		-	-		+	+-	-			4		
		£	Æ	\ w		-			Ž	厂			\vdash		-	+				10		12
- 1			1	i ii		Project	P.0.		Prese	Г	нсілниоз СЭ			+	\pm	+		-	+	Š	My.	12
-				Billing Address:	_	<u> </u>			۲	 	OINer:	×	7	\dashv	-	 		7	-	\$	IB	121
1				eu.	€				ية	\vdash	250 mL Pleatic	-	-	\dashv	+-	-		4		Receiver	11	Date:
ı	ن		}	5	1264	}			Container	\vdash	1 L umber bottle		\dashv		+	-		+		۳		å
	Š			١,			Sub.		હિ	_	Erass Siceve	닋	-	+	+		+	\dashv	+			
1	٧.			Į.	O,		الله ع				40 VIL VOA	$\widehat{-}$	\dashv	╬	+		\Rightarrow	+	#	×	-	2
	90		5 2	ELUTION ANGSKALL	5	İ	Fricoaks 1 Fricoaks		H			굨	긁	हि	╌┼╤	-	-{	<u> </u>	- 2	1		Time: 12,35pm
	77		23	₹	38.	1	*		2		E	135pm	1.45pm	LSOM S		2:00 pm	osp.	7:502	2.400m	adsh:Z		# \S
	×	1	TRE	25	3	*	ير بيا		Sampling			<u>~</u>	<u> </u>	<u> </u>	<u>`</u>	5	7	7	3 %	ri.	J	7 / 2
1	$\mathcal{H}_{\mathcal{I}}$	2	W	ダン	3		华金		San		ا يو	12					\top			١,		
Т	TE	827	اتج	80	WEST CHERRESTO, CA	River RAT	3				Date	61195	4	7	+-	$\vdash \downarrow$	4	┵	\downarrow	$\ket{-}$	1/2	
	SPARGER TECHNOLOGY, INC.	JUSO Fita Citcle, Suise 112 Sacramento, CA 85827	Project Manager:	Report Address: RAWA EJUN	3	ď	Project Location: 9840 FAIR OAKS BIND					T			-	\vdash	+	+		د	7	
	GE	0, 0	9886	:		:	ation				SAMPLEID	7	577	\$\ \$\ \$		*		. -	_ _	4	1	5
	8	a to	Ĭ	₽₫q	j	2	Loca				ब र	8)	, ك	نا و		0	3 6	2 2 2	12	S	1.13	5/2
	36	000	ojeci	port		Project Name:	je c l	ļ			- NA	1	JI	- اہ	3	1	3) e	00	'o	7	allas	2
	-, ,	7 6	<u> </u>	œ.		š	T .						رُ الْ	18	570	ر او او	26		9 E	Refinduished tw.	12	Dale 5/495
			_									7	7	' '	7	1	4	1	, /,		,	
	000	/200 F	-						-													

900/7002

2016 362 0947 JANII R. TAM --- APEX

14:24 98/80/90

7	RECORD		7ath	Number:		ST	WET (STLE)	TOLP	Total	TAT	Ternis Tels (Cd, Ct. Pb, Ni, Zn) Telson Tel	Other: WE	\ \			× ×			p.X.		Time:
Your 2 of 6	UST			i		ANALYSIS REQUEST	CARTON CO	1711 SAMPLES HEE. 4 1212 OUR	TCLP		8080 (beaticides)/505/508	TPHdieseth 6PA 625/8 6PA 602/8 6PA 602/8 6PA 602/8 6PA 625/8				*			Refinquished by: Received by:		Time: Date:
	ıc.	Phone: (916) 362-8947 FAX: 19161 362 0043	Phone: (9116) 371-57-17	Billing Address:	CA. 95691	Project #: USZ	P.O. N. (RE7321	<u>子</u> 公		Container Preservative Used Matrix	o: bortie Piestro	250 mL 8 Meter: Mone Mone Mone Mone Mone Mone Mone Mone							Received by:	Mar	Date: 5/2/9/ Time: Date:
	SPARGER TECHNOLOGY, INC.	3050 Fire Circle, Suite 112 Secremento, CA 95827	Project Manager: DAVE FABY	Ι.	LIUI ZAMENNI	ک	Project Location: FAIL OAKS 15Md			Sampling Co.		SAMPLE ID Date Time 40 810 ST	31.13 5.30	21/04/CD CS. 25/20	1		286 Rembrils		Relinquished by:	7	Date S/2/15 Time:

900/c00@

JANTI R. TAM --- APEK

780 282 818 G

02/08/82 74:24

SPARGER TECHNOLOGY, INC.	FCHN	19070	7. 2	S.					,									ပ	₹	ĭ	<u></u>	3		CHAINOF CUSTODY RECORD	RE	Ö	₽		
3050 Fite Clede, Bulte 112	No 112							Phone:	_	916	(914) 342-894)	1947																	
Staramente, CA 96827	22							FAX	- [9	Ň			T															
Project Moneger:		Andrease						Phone: Fex:		535- 535-	0 0	020	0 _															4712	7
Aspert Address:					Diffing Address:	Add	:		1										Ì	l	ı		ı			Number	ä		
APEX-	fair	anko																											
Project Name:							Project D:	=						T - 1				1	}		AN	11.75	IS R	ANALYSIS REQUEST	ST				
_	Rat						,	,	152					<u> </u>	COMPANTO: SAMPLES 4:1	MKB:	1	\$	Sm.		V	1				WET ISTLE	STIC		
Project Leadon:	Fair Oaks	ers Bud.	Ž.				9	P. P. P.	73	1321						3 10	5,6,7,8,9	186	5	(A~A)	17	<u> </u>	/ '	ω		-		TT	
	ا در	Ę																TCL				-			╫	ا ا		Ţ	
	Sampling	ling		ont	Container	_	100	Preserve	1	Used	10	E	Metrix	1	-	-	-	_				T				_		Τ	TAT
	į		40A W	000015 5007	egred tedras J	SO ML Pleese	СІМИОЗИСЕ			eue	Agret Agreti	is.	<i>y</i> ,	nerth	LEX (905/8050)/2021/	(\$108/0208/209) ##6H41/X31	(2 FOSHIO 1010/HPT/INSERTING FOR	PA 602/8020	802/202/(septimpsed) 0808/808 Aq	(*1204.) DEOM/209 A1	Z-729/0928/929 Vd	SENOTEMBES AN	rganie Lead otal Oil & Greene (5520)	13/M 04/37 PMET	CLIMA VI-WA	AM-S Metale (Cd. Cr. Pb. Ne. Zn)	ner		STEP ush Services (48hr), (24hr), or (12
Trench	56-2-5	01:51		.	_	4			 				4		+	┵┯	-	4		3	3	<u></u>		12	}	┥—		宁	1 ×
PZ ,	-	15:14		×						¥		×				7							\vdash	×				-	7
7.6		15:51		¥						X	_	×				<u>,</u>	14:	=	9	2000	_	12		×				X	
76		15:22		¥						×	-	×				X								×				×	
dL,		15:24		X	-	+	+			X		*				X			_					×				×	
84		15:36		Ź			_		Ì	×		겍				×		\dashv	_					×	-	_			×
88		15.38		-				\Box		7		7				X	<u>.</u>	-	3	Ĭ	B	14		×				×	
%		15:40		×						7		×			`	×								×				×	
d8 /	>	15.42		$\frac{1}{2}$		+				귃	_	*			1	\ \ \								Υ				^	
Relinguished by:	ـــــــــــــــــــــــــــــــــــــ			\dashv	- 5		Received by:	<u>ظ</u>		-	4	4			Religious that have	-		- 	_			\dashv	- 10			_		-	_
ONTH	T				<i>F</i> ,	Alla la	V	Co	1/1	131	N. I	3						<u>.</u>							5				
Date O	þ	i					1	ŀ		-							1		ĺ							Ì			

Prince State Prince Prince State Prince Princ	SPARGER TECHNOLOGY, INC.	TECHN	19070	7. 1	₹C.															CH.	A	Ş	<u>ပ</u>	NS.	10	CHAINOF CUSTODY RECORD	EC	ORI				
Phone: 635-02-0 Phone: 635-02-0 Phone: 635-02-0 Phone: 635-02-0 Phone: 635-02-0 Phone: 635-02-0 Phone: 635-02-0 Phone: 635-02-0 Phone: 635-02-0 Phone: 635-02-0 Phone: 635-02-0 Phone: 635-02-0 Phone: 635-02-0 Phone: 635-02-0 Phone: 625-0 Ph	1050 File Chale, Bui	dto 112			•				ŧ ¯	: N W .	5 5	96 16	2.69.5	2 2																J	,	
######################################	rajest Manages:		1						*	one:	6	ic is	2 0																	7	15	
### ANALYSIS MEQUEST ###################################	isport Address:	4	3			E	D Ad	dress			2	1															ž	E P	۳		-	1
AMANES Section 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	APEX		da de	_																												
### SERVANE 1								Ē	101	;					 					İ		4	뒭	YSIS	E	OUEST					1	- }
TIME: Time:	Rive	Rat						•		45	N					REM	ARK	: :							17 1	>	≩ -		2			
COUNTY X X X MENTER DELIVER OTHER DELIVER OF THE DE	19 at Location: 9840 Fair	Fair Dooks, C	FS B.	Ž.				.	م بکر ض		32,														/	3			-	11		
Contained by: The contained by: The conta																			=	3								Tote	, ,			
Date Date		Samp	Ming		Con	taine	2	<u>-</u>	936	Vet	ņ	9		Yet					П	-	\vdash								\vdash		TAT	
	SAMPLE 1D	0	Time	AOV Jrg OA	eveet2 casual				MCMMOSVCE	·	even	Setto	No see Assess		·			(2) OSINO 1010MHATINESSIBHATI	\$65/2.505/0106/108 A43							13M 0437 03	CAM-17 Metals	CAM-5 Metale (Cd. Cr. Pb. Ni. ZM.	2000	PLE		
46	Hb.	5.2.45	00:91		×			-	-	-	×			×	-	_	×			↓	╙	↓	ᅳ		<u> </u>	×		1	-	X		
9D 16:09 K <td>48</td> <td></td> <td>20:91</td> <td></td> <td>~</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>×</td> <td></td> <td>Ì</td> <td></td> <td></td> <td></td> <td>X</td> <td>\neg</td> <td>;;</td> <td>7</td> <td>g</td> <td>3/6</td> <td>ļ</td> <td>W</td> <td></td> <td>×</td> <td></td> <td></td> <td>-</td> <td>×</td> <td></td> <td><u> </u></td>	48		20:91		~						×		Ì				X	\neg	;;	7	g	3/6	ļ	W		×			-	×		<u> </u>
4D \$\subseteq\$ 16.90 \$\subseteq\$ 16.50 \$\subseteq\$ \$	90		16:09		×						×			×			×									×				X		Ī
tulshed by: Mathing Relinquished by: Relinquished by: Received by: Received by: Received by: A time I ime: I i	96	⇒	14:0		X						×			¥			X	5								X				X		
tuished by: Although (27)			/						-							-				_												1
Tulshed by: Althread by: Received by: Retinquished by: Received by: Received by: Received by: Althread by: Time: 71. Date: Time: 71. Date: Time: 71. Date: Time: Date: Time: 71. Date: Time: 71. Date: Time: 71. Date: Time: Date: Time: 71. Date: Date								1		-					-								-					† †	+ +			F 1
Tulshed by: Received by: Relinquished by: Relinquished by: Relinquished by: Received by: Recei											1			+							++				\bot				+			
1 John 8/ Time 1/2 Ton Date: 1/6 Line: 71. Time: 11. Time: Date: Date: Date:	Relinquished by	¥;]			F	۱ <u>چ</u> ۱	- à	1]	7	-	-	Re Be	١] 🙀	9 0	٦.	1	-	-	-	<u>ĕ</u>	- pevie:	ڿٙڐ		-	4]	
	341	or you	Time	(2)	70		Date		ر المشال	E 4		Ţ.	1:0	1.7	U	é	te:				-	E S			o	::			E	:eE		